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Modality-Specific Segmentation Network for
Lung Tumor Segmentation in PET-CT Images

Dehui Xiang , Member, IEEE, Bin Zhang , Yuxuan Lu, and Shengming Deng

Abstract—Lung tumor segmentation in PET-CT images
plays an important role to assist physicians in clinical
application to accurately diagnose and treat lung cancer.
However, it is still a challenging task in medical image pro-
cessing field. Due to respiration and movement, the lung
tumor varies largely in PET images and CT images. Even
the two images are almost simultaneously collected and
registered, the shape and size of lung tumors in PET-CT
images are different from each other. To address these
issues, a modality-specific segmentation network (MoSNet)
is proposed for lung tumor segmentation in PET-CT images.
MoSNet can simultaneously segment the modality-specific
lung tumor in PET images and CT images. MoSNet learns a
modality-specific representation to describe the inconsis-
tency between PET images and CT images and a modality-
fused representation to encode the common feature of
lung tumor in PET images and CT images. An adversarial
method is proposed to minimize an approximate modality
discrepancy through an adversarial objective with respect
to a modality discriminator and reserve modality-common
representation. This improves the representation power of
the network for modality-specific lung tumor segmentation
in PET images and CT images. The novelty of MoSNet is
its ability to produce a modality-specific map that explicitly
quantifies the modality-specific weights for the features
in each modality. To demonstrate the superiority of our
method, MoSNet is validated in 126 PET-CT images with
NSCLC. Experimental results show that MoSNet outper-
forms state-of-the-art lung tumor segmentation methods.

Index Terms—Lung tumor, PET-CT image, conditional
generative adversarial network.

I. INTRODUCTION

LUNG tumor is one of top malignant cancers [1], and it
has received great attention from all over the world. Due

to increased air pollution and rapid prevalence of tobacco, the
number of people with lung cancers increases dramatically, and
the mortality rate rises. The incidence and mortality of lung
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cancer are extremely high, which seriously threatens people’s
life and health [2]. Positron Emission Tomography (PET) is a
non-invasive imaging technology. The radiolabeled glucose ana-
logue 18-fluorodeoxyglucose (FDG) is injected into the human
body as a tracer to measure the rate of glucose consumption.
Physiological function and biochemical characteristics through
the metabolism of specific organs or tissues can be therefore
evaluated. PET can be used to detect the metabolism of biologi-
cal tissues at the molecular and cellular levels. The tumor usually
peforms with a higher standardized uptake value (SUV) in PET
images; while normal tissue with lower SUV is dark in PET
images. Therefore, tumors can be distinguished, and PET images
play a very important role in the clinical diagnosis and treat-
ment [3]. However, the disadvantage of PET images is that the
spatial resolution is relatively low, and the boundary of lesions
often appears blurred. CT images can provide information on the
anatomical structure of various organs or tissues, but they cannot
show the presence of the metabolic information. Therefore, it is
difficult to distinguish abnormal and normal organs or tissues.
With the introduction of multi-modality imaging technologies,
PET-CT scanners can provide paired FDG-PET and CT images,
which make it possible to simultaneously acquire both functional
and anatomical images [4]. Therefore, PET-CT imaging is often
used in clinical application to diagnose lung cancer, such as
non-small cell lung cancer (NSCLC), which is the most common
type of lung cancer. PET-CT images have become common
objects for lung tumor segmentation and cancer assessment, and
gained a lot of attention in the field of image processing.

Although PET-CT images have been widely used in clinic,
lung tumor segmentation is still a challenging task in medical
image processing field [5]–[9]. As can be seen in Fig. 1, the
main difficulties of lung tumor segmentation in PET-CT images
include the following four points. First, discrepancy often occurs
when the lung tumor is visualized in PET images and CT images.
Intensities of the lung tumor vary largely in PET images and CT
images. CT provides the anatomical localization of the tumor
while PET provides the function and the glucose metabolism.
The curves in Fig. 1 are the contours of the lung tumors, the blue
curves are ground truth of the CT image, and the green curves are
ground truth of the PET image. The two corresponding curves
are not consistent in the two modality images from the same
patients. As studied in previous works [10]–[12], tumor position
between PET and CT is different even using the same protocol
at different respiration levels. The shape and size of lung tumors
in PET-CT images are different from each other since delay
maybe occur in the process of capturing the two modality images
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Fig. 1. Challenges in lung tumor segmentation. The blue curves are
ground truth of the CT image, and the green curves are ground truth of
the PET image. (a) Original CT image; (b) Original PET image; (c) CT
image with ground truth of the CT image (a) and PET image (b); (d) PET
image with ground truth of the CT image (a) and PET image (b).

and the patients may not comply with standard breath-hold
protocol. Image registration is not perfect after the PET-CT
scanner produces two modality images. Second, the boundary
of the lung tumor is visually blurred in CT images, and the
contrast between surrounding tissues and the tumor is low, which
make it very difficult to distinguish its boundary. Third, there are
several neighboring organs, e.g. liver, heart, and muscles, and
they share the similar intensities both in CT images and PET
images between the tumor and its neighboring organs [12], [13].
Fourth, the shape and location of the tumor have great anatomical
differences between different patients, especially the tumor may
exist anywhere in the thorax. Therefore, to address the above
issues, an effective segmentation framework is designed for
robust modality-specific lung tumor segmentation.

The combination of PET and CT has improved the diagnostic
capability of the lung tumor in clinic practice [4], [14], [15].
Many previous papers also have indicated that the integration
of PET and CT information can produce more accurate tumor
volume [6], [7], [9], [13], [16]–[19]. Our previous work [13],
[20] in PET-CT images and CT images show promising for
lung and tumor segmentation, but these conventional methods
need users’ interaction or initialization. Convolutional neural
networks (CNNs) can reduce a lot of efforts in preprocessing
steps and make it more automatic to detect, classify and segment
images.

Considering the complementarity and inconsistency between
PET images and CT images, our aim is to fuse the comple-
mentary information in the two modality images for automatic
lung tumor segmentation, and meanwhile, to preserve modality-
specific features of PET images and CT images. In particular, we
focus on our method can simultaneously obtain the correspond-
ing lung tumor segmentations of PET images and CT images.
We follow Kumar’s work [6] to fuse complementary anatomical

and functional information of the lung tumor from PET-CT
images in the image intensity varying manner. As reported by
Ligtenberg et al. [10], PET-based clinical target volumes (CTV)
were significantly smaller compared to CT-based CTVs. It shows
that it is necessary to provide a modality-specific target definition
of the tumor. Therefore, we focus on modality-specific features
that improve modality-specific segmentation since CT images
depict the lung tumor across multiple anatomy and PET images
depict the lung tumor across multiple locations of function and
the glucose metabolism.

Therefore, a modality-specific segmentation network
(MoSNet) is proposed for modality-specific lung tumor
segmentation in PET-CT images. MoSNet learns a
modality-specific representation to describe the inconsistency
between PET images and CT images and a modality-fused
representation to encode the common feature of lung tumor
in PET images and CT images. An adversarial method is
proposed to minimize an approximate modality discrepancy
through an adversarial objective with respect to a modality
discriminator and reserve modality-common representation.
This improves the representation power of the network for
modality-specific lung tumor segmentation in PET images
and CT images. The novelty of MoSNet is its ability to
produce a modality-specific map that explicitly quantifies the
modality-specific weights for the features in each modality.
This is in contrast to CNNs that use produce a single map for
CT images or PET images [6]–[9], [18], [19], [21]. MoSNet
is intended as a modality-specific approach for integrating
PET and CT information and keeping modality-fused features
to obtain modality-specific segmentation. To demonstrate the
efficacy of our method, we conduct experimental comparisons
with state-of-the-art lung tumor segmentation methods on
PET-CT images with NSCLC.

II. RELATED WORK

Accurate segmentation of lung tumors plays a very important
role in clinical diagnosis and treatment. A large number of lung
tumor studies have been reported to improve the accuracy of
lung tumor segmentation. Overall, current lung tumor segmen-
tation methods can be divided into traditional methods and deep
learning methods.

Traditionally, SUV was often used for lung tumor segmen-
tation in PET images. A tumor would be considered as a ma-
lignant tumor in clinical diagnosis when SUV is higher than a
constant. Therefore, a large number of lung tumor segmentation
algorithms are based on threshold values. Erdi et al. [22] used a
fixed threshold to predict the true lesion volume for lesions larger
than 4 mL based only on the source–to–background value from
PET images. However, the fixed threshold method produced
overestimation of the volume by an amount that depended on the
source–to–background ratio for smaller volumes. Jentzen et al.
[23] proposed an iterative thresholding method, and their method
performed well only in the visible area of PET images. Nehmeh
et al. [24] developed an iterative method to estimate threshold
value of tumor segmentation based on Monte Carlo simulation.
They described the correlation between lesion volume and the
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corresponding optimal threshold so that the optimal threshold
value could be determined. However, threshold methods are
often sensitive to uneven grayscale distribution of tumors in PET
images. The gray values of tumors are similar to those of the liver,
heart, and spine. Under-segmentation or over-segmentation usu-
ally occurs, resulting in low true positive or high false positive
in the segmentation results. Tumor features had further studied
to extract from PET images to segment tumors. Geets et al. [25]
proposed a gradient-based tumor segmentation method on PET
images, and they combined gradient intensity estimation with
watershed transformation and hierarchical clustering analysis.
Belhassen et al. [26] proposed a fuzzy C-Means clustering
algorithm to cope with noisy and low resolution PET images.
Nonlinear anisotropic diffusion filtering was first used to smooth
PET images, and then fuzzy C-Means clustering and spatial
information were combined. In recent years, more segmentation
algorithms have been proposed to segment tumors. Cherry et al.
[27] proposed a graph cut method to improve the segmentation of
PET lung tumors. This energy function of the graph cut method
was based on the tumor voxel in the PET image, and combined
with a SUV function. The monotonic declining characteristic
was supposed to solve the problem of tumor heterogeneity and to
boost the segmentation of tumors from adjacent structures also
with high FDG uptake. PET and CT images can complement
each other. Jafar et al. [28] proposed a tumor segmentation
method for CT and PET images. The method was designed
to find the optimal threshold value to extract lung from the
three-dimensional volume, and a multi-threshold algorithm was
used to detect all suspicious PET and CT images. Fuzzy clus-
tering algorithm was also used to reduce false positive. Guo
et al. [29] proposed a reliable method for automatic lung tu-
mor segmentation on PET and CT images based on the fuzzy
Markov random field model. The method was a combination
of PET and CT image information through the observation of
posterior probability distribution. Soltani-Nabipour et al. [30]
used improved region growing algorithm in CT images. Vijh
et al. [31] used marker-controlled watershed and support vctor
machine to segment and classify lung tumor. Han et al. [32]
also proposed a Markov random field based segmentation of the
image pair with a regularized term that penalizes the segmen-
tation difference between PET and CT to concurrently segment
tumor from both modalities. Song et al. [16] constructed two
sub-graphs for the segmentation of the PET and the CT images.
An adaptive context cost was proposed by adding context arcs
to achieve consistent results in two modalities. Ulaş et al. [17]
developed a graph-based interactive segmentation method, and
proposed random walk to segment PET, PET-CT, MRI-PET,
and MRI-PET-CT images to obtain the global optimal contour
of tumors [33]. We [13] used a random walk algorithm to obtain
the initial contour of lung tumors, and proposed a graph cut
algorithm with a joint segmentation energy function for PET
and CT images, and lung tumors were obtained by minimizing
the energy function. However, these methods often needed users’
interaction.

Deep learning methods have already been demonstrated ad-
vantages in disease diagnosis on medical images, such as ab-
normality detection and segmentation due to their huge power

in extracting useful information from large amount of data.
Convolutional neural networks (CNNs) are one of popular deep
learning methods to address the common semantic segmentation
or detection tasks. CNN architecture such as U-Net appears to
be a encode-decode structure to hierarchically fuse low-level
and high-level features with the combination of convolution and
deconvolution layers. Jiang et al. [34] proposed multiple reso-
lution residually connected network to simultaneouslycombine
features across multiple image resolution and feature levels
through residual connections to detect and segment the lung
tumors in CT images. Zhao et al. [21] proposed a multi-modality
segmentation method based on a 3D fully convolutional neural
network (FCN) to use both PET and CT information simulta-
neously for tumor segmentation. Xu et al. [18] assembled PET
and CT into two channels of combined images and cascaded
two V-Nets to form a W-Net architecture to improve the seg-
mentation to bone-specifc lesions. Zhong et al. [19] used two
3D-UNets to respectively train on the preprocessed CT image
and PET image to obtain the coarse segmentation results of lung
tumors, and then further adopted a joint graph segmentation
method based on potential label consistency between of PET
and CT bimodal images to refine initial segmentation. Kumar
et al. [6] proposed a co-learning feature fusion CNN model
to fuse complementary information for PET-CT images. The
model encoded modality-specific features to generate a spatially
varying fusion map that quantifies the relative importance of
each modality’s features across different spatial locations and to
obtain a representation of the complementary multi-modality in-
formation at different locations. Lu et al. [8] constructed a neural
network architecture for auto-segmenting tumors by leveraging
a 14-layer U-Net model with two blocks of a VGG19 encoder
pre-trained with ImageNet. They then imported a DropBlock
technique to replace the normal regularization dropout method to
help U-Net efficiently avoid overfitting. Their method achieved
a relatively competitive performance in PET images on tumor
segmentation. Li et al. [7] also designed a 3D FCN to produce
a probability map from the CT image and roughly segmented
the tumor from its surrounding soft tissues. Hu et al. [35]
proposed a hybrid attention mechanism and densely connected
convolutional networks to segment lumg tumor in CT images.
Pang et al. [36] introduced CTumorGAN to segment lung tumor
in CT images. Gan et al. [37] combined 2D dense connection
CNN and 3D V-Net to segment lung tumor in CT images. Tyagi
et al. [38] used 3D U-Net with deformable convolution blocks
to segment lung tumor in CT images. Fu et al. [9] introduced
a multimodal spatial attention module (MRRN) that automati-
cally learned to emphasize spatial regions related to tumors and
suppress normal regions with physiologic high-uptake in PET
images. The spatial attention maps were subsequently employed
in a CNN for segmentation of areas with higher tumor likelihood
in the CT images. Li et al. [39] proposed the cycle-consistent
image conditional variational autoencoder and the Res-Unet to
segment lung tumor on multi-modal MRI images. Dutande et
al. [40] introduced two deep residual separable convolutional
neural networks to lung tumor from CT images. Zhao et al.
[41] used a distraction-Ssensitive U-Net to segment lung tumor
in CT images. In recent years, domain adaptation has attracted
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Fig. 2. The architecture of MoSNet.

researchers’ attention to transfer knowledge from a well-labeled
and related source domain to assist the target domain learn-
ing [42], [43]. Domain transfer networks have been proposed to
extract domain shift features by minimizing some measure of
domain gap such as maximum mean discrepancy (MMD) [43]–
[45] or correlation distances [46], [47]. GANs [48] have also
been used to domain transfer tasks [49]. MMD is the norm of
the difference between two domain features. Feature discrep-
ancy across domains was evaluated by MMD embedded in a
reproducing kernel Hilbert space [43]–[45]. Correlation distance
computed the mean and covariance of the two distributions [46],
[47]. Shallow fully connected network was also designed as
a domain classifier to reduce domain discrepancy [50], [51].
Domain shift was treated as a binary classification problem. A
gradient reversal layer (GRL) was proposed to change the sign
of the gradient from the subsequent level for backpropagation.
GANs have also been explicitly used to transfer a sample in
one domain to an analog sample in another domain. The domain
transfer network was proposed to learn a generative function that
maps an input sample from source domain to the target domain
with a compound loss function. The discriminative classifier
distinguishes between fake images drawn from the generator
and true images from the training data. These domain adaptation
methods are promising techniques for cross-domain tasks and
often used to unsupervised visual domain adaptation. Inspired

by these work, these adversarial methods are used to mini-
mize an approximate modality discrepancy between PET-CT
images.

III. METHOD

Fig. 2 shows the whole architecture of lung tumor seg-
mentation network. Multiple modality-specific encoder-decoder
branches are integrated into the conditional Generative Ad-
versarial Network (cGAN) framework, and a novel PET-
CT convolution neural network is therefore proposed for
lung tumor segmentation. The dual-stream encoder ENPET ,
ENCT , is respectively designed to generate different level
modality-specific representations for PET images and CT
images. One decoder branch DEfuse is designed to fuse
the multiple modality representations of PET images and
CT images. A modality-specific decoder branch DEPET is
designed to integrate different level modality-specific rep-
resentations of PET images. Another modality-specific de-
coder branch DECT is also designed to integrate different
level modality-specific representations of CT images. The two
modality-specific decoder branches DEPET and DECT are
respectively further fused with DEfuse to generate fused
modality-specific features FPET and FCT . PET segmentation
discriminator DPET and CT segmentation discriminator DCT
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are used to distinguish the lung tumor segmentation. A modality
discriminator DM is proposed to distinguish modality-specific
features FPET and FCT . The structure of the proposed model
is described below.

A. Modality-Specific Encoder

The PET encoder ENPET includes five PET convolution
blocks: conv1pet, conv2pet, conv3pet, conv4pet, conv5pet,
where the size of input features is downsampled as 1/2 in width
and height of the former convolution block features except
conv1pet. The down-sampling layers of the convolution block
adopts a maxpooling layer with the stride of 2 and the kernel
size of 2× 2. Each convolution block includes convolution (the
size of convolution kernels is 3× 3, and the stride is 1) and
batch normalization. The input of the activation function ReLU
is connected to the output of each batch normalization layer. The
convolution block is defined as

DCovv3×3 (Fin) = Cov3×3 (Cov3×3 (MP (Fin))) , (1)

Cov3×3 (Fin) = ReLU (BN (conv3×3 (Fin))) , (2)

where Fin is the input feature, MP is a maxpooling opera-
tion and DCov is a double convolutional block. Kindly note
that input of conv1pet does not need to be computed with a
maxpooling layer. ReLU is used as the activation function to
eliminate negative feature values, linearly emphasize regions
of high saliency with large values, such that the generator can
restrain non-tumor features and emphasize tumor features. BN
is batch normalization and conv3×3 is the 3×3 convolution oper-
ation. The CT encoderENCT also includes five CT convolution
blocks: conv1ct, conv2ct, conv3ct, conv4ct, conv5ct and the
five convolution blocks are the same as those of PET.

B. Modality-Specific Fusion

The fusion decoder branch DEfuse includes five PET-CT
fusion blocks: fuse1, fuse2, fuse3, fuse4, fuse5. The PET-
CT fusion block connects PET feature and CT feature. Each level
PET-CT feature fusion includes a concatenation operation and a
double convolution block without the maxpooling operation in
(1). The PET-CT feature fusion in lth level is defined as

F l
fuse = DCov

(
concat

(
F l

conv_pet
, F l

conv_ct

))
, (3)

where concat is a concatenation operation.F l
conv_pet

denotes the

output feature of convlpet in lth level and F l
conv_ct

denotes the
output feature of convlct in lth level. Level lth feature is then up-
sampled using a 2×2 transpose convolution with a stride of 2×2.
Level lth feature with the transpose convolution is concatenated
with F l−1

fuse and followed by a double convolution block without
the maxpooling operation in (1).

The PET modality-specific decoder branch DEPET includes
four PET deconvolution blocks: deconv1pet, deconv2pet,
deconv3pet, deconv4pet. Level lth feature of PET is then
up-sampled using a 2×2 transpose convolution with a stride
of 2×2. Level lth feature with the transpose convolution is
concatenated with PET feature F l−1

pet and followed by a double
convolution block without the maxpooling operation in (1). The

CT modality-specific decoder branch DECT also includes four
CT deconvolution blocks: deconv1ct, deconv2ct, deconv3ct,
deconv4ct and the four deconvolution blocks are the same as
those of PET.

Final modality-specific fusion includes a PET fusion block
and a CT fusion block. The PET fusion block further fuses the
output features of fuse1 and deconv1pet. The output features
of fuse1 and deconv1pet are concatenated and fused with a
double convolution block without the maxpooling operation
in (1). The feature is fed to PET segmentation block (a 3×3
convolution operation) for generating the segmentation map of
the PET image. The segmentation map of the CT image is also
generated as that of the PET image.

C. Discriminator

For cGAN segmentation network, the PET segmentation dis-
criminator, the CT segmentation discriminator and the modality
discriminator DM contain three convolutional blocks including
a 4×4 convolutional layer, batch normalization and LeakyReLU,
and a 1×1 convolutional layer. LeakyReLU is used as the acti-
vation function to linearly emphasize regions of high saliency
with large values but linearly scale down the negative feature
values, such that the discriminators can distinguish true/fake
or PET/CT features more accurately. The segmented image or
the label image are concatenated with the original image and
then fed to the segmentation discriminator. The segmentation
discriminator judges to be false when the segmented image is
fed and judges to be true when the manually labeled image is
fed. The modality discriminator judges to be false when the
modality-specific feature FCT is fed and judges to be true when
the modality-specific feature FPET is fed.

D. Modality-Specific Segmentation

In our multi-modality image segmentation, PET images and
CT images are respectively labeled. xPET , yPET denote a PET
image and its corresponding label. Similarly, xCT , yCT denote a
CT image and its corresponding label. PET and CT image pairs
have the same classes from the same patient, but there exists a
domain shift between their feature distributions. In this work, we
propose a novel framework for modality-specific segmentation,
allowing us to effectively integrate PET and CT information and
keep modality-fused features to segment the modality-specific
lung tumor.

Most existing researches in PET-CT image segmentation are
devoted to segment tumors in one modal image without or
with guidance of the other modal image [6]–[9], [18], [19],
[34], only considering one modal image segmentation. However,
these tumor segmentation methods did not include modality
discrepancy, which is more practical and challenging in clini-
cal applications. Thus, a reasonable consideration is that, both
modality-common and modality-specific features should be si-
multaneously learned in convolutional fusion stage to effectively
model complex data from different modalities. Meanwhile, the
modality inconsistency is explicitly minimized with feature
alignment after the modality-specific layers: PET fusion block
and CT fusion block.
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The proposed lung tumor segmentation network is embed-
ded into the cGAN framework [52], as shown in Fig. 2. The
cGAN framework learns a mapping S from PET-CT images to
two segmentation probabilities for the PET image and the CT
image. The PET segmentation discriminator DPET classifies
concatenated pairs of PET image and prediction as being real
or fake constrained by the adversarial loss, which is calculated
from the discriminator DPET to penalize the generator S. DCT

classifies concatenated pairs of CT image and prediction as being
real or fake constrained by the adversarial loss, which is calcu-
lated from the discriminator DCT to penalize the generator S.
Given a PET-CT image pair xPET , xCT , and the corresponding
manually annotated label pair yPET , yCT , the adversarial loss
in cGAN is used to match the distribution of images to that of
the target distribution, and it can be expressed as,

LS,DPET ,DCT

GAN (xPET , xCT )

= E [logDPET (yPET , xPET )]

+ E [log (1−DPET (SPET (xPET , xCT ) , xPET ))]

+ E [logDCT (yCT , xCT )]

+ E [log (1−DCT (SCT (xPET , xCT ) , xCT ))] . (4)

where E is the average function. A pixel-wise loss term L1 is
used to penalize pixel-wise segmentation errors and bring the
PET prediction yPET

′ = SPET (xPET , xCT ) from the gener-
ator S (yCT

′ = SCT (xPET , xCT ) denotes the CT prediction)
closer to ground truth yPET and stabilize GAN training,

LS
1 (xPET , yPET ) = E [‖yPET − yPET

′‖1] , (5)

The binary cross-entropy function is used in the segmentation
network to classify the foreground and background of each pixel
as

LS
bce (yPET , yPET

′) = − 1

H ×W

H×W∑
i=1

(yPET i log yPET
′
i ,

+(1− yPET i) log (1− yPET
′
i)) ,

(6)

where yPET
′
i ∈ [0, 1] is the ith pixel in the PET prediction of

yPET
′, yPET i ∈ [0, 1] is the ith pixel in ground truth yPET . H

and W are the height and width of the image, respectively. The
binary cross-entropy loss LS

bce is commonly used in classifica-
tion tasks and may ignore the segmentation integrity of the image
level. Therefore, the dice loss be also introduced to optimize our
proposed network.

LS
dice (yPET , yPET

′) = 1− 2
∑H×W

i=1 (yPET iyPET
′
i)∑H×W

i=1 yPET i+
∑H×W

i=1 yPET
′
i

.

(7)
LS
1 (xCT , yCT ), LS

bce(yCT , yCT
′) and LS

dice(yPET , yPET
′) are

also defined for CT prediction as those of PET prediction.
Since there exists a certain correlation between PET and

CT images, the two modality images should share part of the
network parameters. Meanwhile, the PET and CT images are
distributed differently, so the modality-specific network with
supervised information should be proposed to extract features,

which are only sensitive to the corresponding modal images.
Therefore, the segmentation network S learns a modality-fused
representation to encode the common features of lung tumor in
PET images and CT images, and a modality-specific represen-
tation to desribe the inconsistency beween PET images and CT
images. A modality discriminator DM is used to minimize PET
and CT representation distances classifies whether a represen-
tation is drawn from the PET image or the CT image. DM is
optimized according to a supervised loss as

LS,DM

GAN (xPET , xCT ) = E [logDM (FPET )] ,

+ E [log (1−DM (FCT ))] , (8)

whereFPET denotes PET-specific feature computed by the PET
fusion block, and FCT denotes CT-specific feature computed by
the PET fusion block in the segmentation network S. There are
other different possible choices of adversarial loss functions,
such as MMD [43]–[45], the gradient reversal layer [50], [51],
maximum classifier discrepancy (MCD) [53], margin disparity
discrepancy (MDD) [54].

Based on (4) to (8), the full objective function for cGAN-based
segmentation can be expressed as,

LS,DPET ,DCT ,DM (xPET , yPET )

= LS,DPET ,DCT

GAN (xPET , xCT )

+ λ1L
S
1 (xPET , yPET ) + λ1L

S
1 (xCT , yCT )

+ λbceL
S
bce (yPET , yPET

′) + λbceL
S
bce (yCT , yPET

′)

+ λdiceL
S
dice (yPET , yPET

′) + λdiceL
S
dice (yCT , yCT

′)

+ LS,DM

GAN (xPET , xCT ) , (9)

where λ1 is the weight of the L1 loss, λbce is the weight of the
LS
bce loss, λdice is the weight of the LS

dice loss.
To this end, we integrate all the components and obtain the

following overall objective of MoSNet, in which the segmenta-
tion network S and the three discriminators: PET segmentation
discriminator DPET , CT segmentation discriminator DCT and
the modality discriminator DM , play a min-max game in re-
spectively minimizing and maximizing the objective function
as

arg max
DPET ,DCT ,DM

min
S

LS,DPET ,DCT ,DM . (10)

IV. EXPERIMENTS

In this section, we test the performance of the modality-
specific lung tumor segmentation framework by conducting ex-
tensive evaluations on our benchmark dataset. Additional details
about experiments and results are reported as following.

A. Data

Our dataset comprises 126 FDG PET-CT scans of patients
with biopsy-proven NSCLC. The images are acquired by a GE
Discovery ST16 PET-CT scanner in the first affiliated hospital
of Soochow University and adhered to the tenets of the Decla-
ration of Helsinki. Each image comprises one CT volume and
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one PET volume. The two volumes are reconstructed with the
same number of slices. The CT resolution is 512×512 pixels at
0.98 mm×0.98 mm, the PET resolution is 128 ×128 pixels at
5.47 mm × 5.47 mm, with a slice thickness and an interslice
distance of 3.27 mm. Images contain between 1 to 3 tumors in
the thorax. PET images are rescaled to 512× 512 in axial view so
that the PET-CT image pair shares the same coordinate space.
Tumors are manually annotated by an experienced oncologic
nuclear imaging expert using ITKsnap [55]. Lung tumors in
PET images and CT images are respectively annotated with the
consideration of the other modality. Only small number of 2D
thorax slices contain the lung tumors, many previous researches
only trained and tested their models with the 2D thorax slices
containing tumors [6], [9], [34]. In our experiments, we do
not exclude slices without tumor pixels in ground truth. 126
FDG PET-CT scans are divided into two groups: 62 and 64 as
training and test sets for a 2-fold cross validation evaluation. The
first group contains 3460 2D thorax PET-CT slice pairs and the
second contains 3525 2D thorax PET-CT slice pairs.

B. Implementation Details

All models are built in pytorch. The workstation is with a
NVIDIA GeForce RTX 3090 GPU with 24 G memory. The batch
size is set to 1 and 110 epochs are trained. Since the proposed
model is implemented in cGAN framework and the sizes of the
lung tumors in CT images and PET images are often small,
Adam optimizer is used to stably optimize the proposed model
and the initial learning rate is 0.0002. The learning rate is not
changed in the first 10 epochs and then linearly attenuated in the
rest 100 epochs. The size of all PET-CT images is 512 × 512.
λ1 is set to 100. λbce and λdice are set to 1. The total training
time of MoSNet is about 230 hours, and the test time of each
PET-CT volume is about 30 seconds.

C. Evaluation Metrics

In order to quantitatively evaluate the algorithms, four com-
monly used evaluation indicators in medical image segmentation
are used as the evaluation criteria for experimental results of PET
volumes and CT volumes: Dice similarity coefficient (DSC),
intersection over union (IoU), precision and recall. DSC and IoU
are usually used to measure the similarity between the network
segmentation results and ground truth as

Dice =
2TP

FP + 2TP + FN
, (11)

IoU =
TP

FP + TP + FN
, (12)

where TP represents the number of true positives, FP represents
the number of false positives and FN represents the number of
false negatives. Precision and recall are defined as

Precision =
TP

FP + TP
, (13)

Recall =
TP

TP + FN
. (14)

Paired t-test to Dice is conducted to compare the difference in
segmentation results between our method and related methods,
and p < 0.05 is considered statistically significant.

D. Ablation Experiments

Different combinations and adversarial loss functions are
tested in our modality-specific lung tumor segmentation frame-
work to determine the contributions of each block and adversar-
ial loss to the segmentation performance. A comparison of the
improvement on tumor segmentation performance is presented
in Table I. The configurations of ablation experiments are as
follows,

M1 Baseline+LS
1 +w/oNL: The baseline segmentation ar-

chitecture is an encoder-decoder network, which in-
cludes the modality-specific encoder, PET-CT fusion
blocks, PET segmentation block and CT segmentation
block. PET segmentation block and CT segmentation
block directly connect to fuse1without the PET fusion
block and the CT fusion block. PET segmentation dis-
criminator DPET and CT segmentation discriminator
DCT are also used to construct the cGAN framework.
The loss is LS

1 but normal thorax PET-CT slice pairs
(NL) without the lung tumor are not used. The first
group contains 895 PET-CT slice pairs with lung tu-
mors and the second group contains 840 PET-CT slice
pairs. All the PET-CT slice pairs including normal
thorax PET-CT slice pairs are segmented in the test
stage.

M2 Baseline+LS
1 +LS

bce+w/oNL: The baseline segmenta-
tion architecture, LS

1 and LS
bce are used, but normal

thorax PET-CT slice pairs (NL) are not used.
M3 Baseline+LS

1 +LS
bce+LS

dice+w/oNL: The baseline seg-
mentation architecture, LS

1 , LS
bce and LS

dice are used,
but normal thorax PET-CT slice pairs (NL) are not
used.

M4 Baseline+LS
1 +LS

bce+LS
dice: The baseline segmentation

architecture, LS
1 , LS

bce and LS
dice are used, and normal

thorax PET-CT slice pairs (NL) are used.
M5 M4+Mo: The extension of M4. Two decoders and two

fusion blocks are added to the baseline segmentation
architecture. The CT modality-specific decoder branch
and the PET modality-specific (Mo) decoder branch
are added. The PET fusion block and the CT fusion
block are also added.

M6 M5+Mo+LS,DMMD : The extension of M5. Modality-
specific feature alignment is based on the MMD crite-
rion LS,DMMD [43]–[45] with M5 in the reproducing
kernel Hilbert space.

M7 M5+Mo+LS,DMMDp : The extension of M5. Modality-
specific segmentation alignment is based on the MMD
criterion LS,DMMDp [43]–[45] with M5 in the repro-
ducing kernel Hilbert space.

M8 M5+Mo+LS,DGRL : The extension of M5. Modality-
specific feature alignment is based on the GRL
LS,DGRL [50], [51]. Due to the limitation of the
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TABLE I
LUNG TUMOR SEGMENTATION RESULTS OF CT IMAGES AND PET IMAGES IN ABLATION EXPERIMENTS (MEAN ± STANDARD DEVIATION)

memory, the two modality-specific features are down-
sampled with 1/8 with maxpooling and then flattened.

M9 M5+Mo+LS,Dp : The extension of M5. The model is
designed by adding an additional prediction discrimi-
nator Dp, which discriminates the prediction from the
PET image or the CT image in the M5.

M10 M5+Mo+LS,DM

GAN : Our final network is the extension
of M5. Modality-specific feature alignment is based on
the modality discriminator DM .

Fig. 3 shows a case of the lung tumor segmentation in PET-CT
images. The blue curves are ground truth of the CT image, the
green curves are ground truth of the PET image, and the red
curves are the segmentation results. As can be seen in Fig. 3(b)
and (n), the lung tumor contours in the two modality images
are different from each other since they are not perfectly corre-
sponded regard to its position, shape and intensities. Precision,
Recall, IoU, Dice are 63.56%, 81.53%, 54.19%, 68.69% for lung
tumor annotation between in PET images and CT images. The
result shows that the modality-specific lung tumor segmentation
is important to accurately segment lung tumor in PET images
and CT images, because of the large inconsistency between these
two modality images.

Our baseline consists of two segmentation blocks for the
PET image and the CT image, and therefore, the correspond-
ing lung tumor segmentation can be simultaneously obtained.
We first trained the netwoork as the configuration of M1 in
Table I, Precision, Recall, IoU, Dice reach 47.11%, 73.81%,
39.17%,51.74% for lung tumor segmentation in CT image, and
these indices reach 54.82%, 82.5%, 47.42%, 60.02% for lung
tumor segmentation in PET image. With addtional loss function
LS
bce to M1, Precision, IoU, Dice are improved by 2.44%, 2.05%,

2.03% for lung tumor segmentation in CT image, and these
indices are improved by 6.27%, 4.61%, 4.19% for lung tumor
segmentation in PET image. With addtional loss function LS

dice

to M2, Precision, IoU, Dice are improved by 9.15%, 4.9%,
5.12% for lung tumor segmentation in CT image, and these
indices are decreased slightly for lung tumor segmentation in
PET image. As all the normal thorax PET-CT slice pairs are used
to train the baseline, Precision, IoU, Dice are further improved
by 22.48%, 14.26%, 22.79% for lung tumor segmentation in
CT image, and these indices are improved by 22.73%, 11.44%,
10.14% for lung tumor segmentation in PET image.

With the configuration of M4, Precision, Recall, IoU, Dice
reach 81.28%, 70.54%, 60.37%,71.68% for lung tumor segmen-
tation in CT image, and these indices reach 83.76%, 74.51%,
62.36%, 73.96% for lung tumor segmentation in PET image.
When the two modality-specific decoder brancher DECT and
DEPET are integrated into the network. Compared to M4, IoU
and Dice slightly decrease by 0.88% and 0.15% in CT image seg-
mentation, and they also slightly decrease by 0.24% and 0.23%
in PET image segmentation. Modality-specific feature might
slightly reduce the fusion and complementarity. Compared to
M4, by using MoSNet, Recall, IoU, Dice increase by 1.06%,
4.09%, 3.39%, 3.84% for lung tumor segmentation in CT image,
and Recall, IoU, Dice increase by 5.12%, 3.9%, 3.76% for lung
tumor segmentation in PET image. The two p values are smaller
than 0.05, which shows that the modality discriminator DM has
statistically improved performance of lung tumor segmentation
in PET-CT images.

Compared to MoSNet, Precision, IoU, Dice decrease by
29.11%, 18.99%, 18.55% for lung tumor segmentation in CT
image, and Precision, IoU, Dice decrease by 27.78%, 19.11%,
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Fig. 3. Lung tumor segmentation results of different methods. The blue curves are ground truth of the CT image, the green curves are ground
truth of the PET image, and the red curves are the segmentation results. The yellow arrows point out the under-segmentation and the cyan arrows
point out the over-segmentation. (c)-(l) Lung tumor segmentation results of different methods in the CT image, (o)-(x) Lung tumor segmentation
results of different methods in the PET image. (a) CT image, (b) CT image with ground truth of the CT image and PET image, (c) RCNet [34], (d)
UNet [8], (e) nnUNet [56], (f) VNet3d [7], (g) WNet [18], (h) UNet3d [19], (i) UNet2.5d [8], (j) MSAM [9], (k) Co-learning [6], (l) MoSNet; (m) the
corresponding PET image of (a), (n) PET image with ground truth of the CT image and PET image, (o) RCNet [34], (p) UNet [8], (q) nnUNet [56],
(r) VNet3d [7], (s) WNet [18], (t) UNet3d [19], (u) UNet2.5d [8], (v) MSAM [9], (w) Co-learning [6], (x) MoSNet. Except (a) and (m), the rest images
are locally enlarged.

18.27% for lung tumor segmentation in PET image by us-
ing M6. This shows that MMD of modality-specific features
leads to negative feature alignment. When MMD is used to
discriminate PET and CT prediction by using M7, Precision,
Recall, IoU, Dice decrease by 4.32%, 10.46%, 8.77%, 9.21%
for lung tumor segmentation in CT image, and Precision, Recall,
IoU, Dice decrease by 1.7%, 13.02%, 10.33%, 10.82% for
lung tumor segmentation in PET image. This shows that MMD
of modality-specific prediction leads to negative prediction
alignment.

Compared to MoSNet, Precision, Recall, IoU, Dice decrease
by 5.69%, 2.13%, 4.79%, 4.51% for lung tumor segmentation in
CT image, and Precision, IoU, Dice decrease by 1.05%, 2.03%,
1.68%, 2.28% for lung tumor segmentation in PET image by
using M8. p of CT image segmentation is smaller than 0.05
but that of PET image segmentation is larger than 0.05. This
shows that GRL does not improve lung tumor segmentation in
CT image. Compared to MoSNet, the prediction discriminator
leads to the decrease of Recall, IoU, Dice by 7.06%, 4.25%,
4.1% for lung tumor segmentation in CT image, and decrease
of Recall, IoU, Dice by 3.92%, 1.08%, 1.45% for lung tumor
segmentation in PET image by using M9. Although the de-
crease in PET image segmentation is not statistically signif-
icant, the decrease in CT image segmentation is statistically
significant.

E. Comparison Against State-of-The-Art Networks

MoSNet is also compared to state-of-the-art lung tumor
segmentation networks: UNet [8], RCNet [34], UNet3d [19],
UNet2.5d [8], VNet3d [7], nnU-Net [56], WNet [18], Co-
learning [6] and MSAM [9]. Quantitative comparisons are
shown in Table II. The model training is configured as,

C1 UNet: For the single modality image segmentation net-
work, the CT image is fed to train the network with the
corresponding manual annotation of CT images, while
the PET image is fed to train the network with the
corresponding manual annotation of PET images.

C2 RCNet: The network is also trained as UNet.
C3 nnUNet: 3D fullres model is used and trained as UNet.
C4 VNet3d: For the single modality image 3D segmentation

network, the 3D CT image patch is fed to train the
network with the corresponding manual annotation of
CT images, while the 3D PET image patch is fed to train
the network with the corresponding manual annotation
of PET images. The image patch size is 512× 512× 8,
and the moving stride is (512,512,2).

C5 UNet2.5 d: Another segmentation layer is added to
UNet. The input is the concatenation of the PET-CT
image pair. The corresponding manual annotations of
PET-CT images are used to compute the loss of the
network.
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TABLE II
COMPARISONS OF SEGMENTATION RESULTS BETWEEN MOSNET AND STATE-OF-THE-ART NETWORKS (MEAN ± STANDARD DEVIATION)

C6 WNet: For the two modality image 3D segmentation
network, the 3D CT image patch and the 3D PET im-
age patch are fed to train the network with the corre-
sponding manual annotations. The image patch size is
512× 512× 8, and the moving stride is (512,512,2).

C7 UNet3d: The network is trained as VNet3d.
C8 MSAM: When the network is trained with the corre-

sponding manual annotation for the segmentation of the
PET image, the CT image is fed to MSAM for the com-
putation of the spatial attention map. When the network
is trained with the corresponding manual annotation for
the segmentation of the CT image, the PET image is fed
to MSAM for the computation of the spatial attention
map.

C9 Co-learning: Another segmentation layer is added to the
original Co-learning [6]. The paired PET-CT images are
respectively fed to the two encoders of Co-learning. The
corresponding manual annotations of PET-CT images
are used to compute the loss of the network.

Fig. 3(c)-(i) and (k) show that under-segmentation tends to be
leaded for lung tumor segmentation in the CT image. RCNet,
UNet, VNet3d, WNet and UNet3d do not segment the lung
tumor. nnUNet, UNet2.5 d and Co-learning can segment a small
part of the lung tumor. With the constraint of the PET image,
MSAM can segment the lung tumor. MoSNet can accurately seg-
ment the lung tumor with modality-specific feature alignment.
As can be seen in Fig. 3 (p), the lung tumor is over-segmented in
the PET image by using UNet. As can be seen in Fig. 3 (r) and (s),
VNet3d and WNet can not segment the lung tumor in the PET
image. Fig. 3(w) shows that Co-learning under-segments the
lung tumor in the PET image. MoSNet can accurately segment
the lung tumor.

A comparison of the improvement on tumor segmentation
performance is presented in Table II. One case of lung tumor

segmentation is show in Fig. 3. As can be seen in Table II, lung
tumor segmentation in the CT or PET image by using RCNet,
UNet, nnUNet, UNet3d and VNet3d is inferior to those methods
with PET-CT images. Compared to UNet, the combination of
PET-CT images can improve the accuracy of modality-specific
segmentation of the lung tumor. Recall, IoU, Dice increase
by 18.03%, 2.91%, 3.94% for lung tumor segmentation in CT
image, and Precision, IoU, Dice by 18.86%, 11.59%, 12.43%
increase by for lung tumor segmentation in PET image by using
UNet2.5 d. Although WNet used two VNet3D to respectively ex-
tract PET-CT feature, a feature fusion module was subsequently
used to extract features from PET-CT feature maps [18]. The fea-
ture fusion is too late to segment lung tumor segmentation in the
CT image, since the constrast of the CT image is much lower than
that of the PET image. Co-learning [6] outperforms MSAM [9]
for lung tumor segmentation both in the CT and PET image.
Co-learning extracts and fuses PET-CT-specific feature while
MSAM only fused a spatial attention map to the other modality
image. MoSNet consists of two additional modality-specific
decoder branches, and therefore, it outperforms state-of-the-art
networks. The modality discriminator is further used to softly
reduce the modality-specific feature discrepancy, and allows
the network to preserve complementarity between PET and CT
images.

F. Discussion

In this paper, we present a novel deep neural network frame-
work to automatically segment the lung tumor in PET-CT im-
ages. The results presented in the previous sections have shown
our model’s effectiveness and advancement in the multiple
modality image segmentation.

With the cGAN framework, a novel model is designed with
a dual stream encoder to extract diverse and complementary
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features of PET images and CT images, a decoder to fuse
these different multiple modality features and two decoders
to preserve modality-specific features of PET images and CT
images. As shown in the ablation experiments, M4 demonstrates
that lung tumor segmentation is beneficial from the diverse
and complementary features of PET images and CT images.
Although the modality-specific features of PET images and CT
images slightly reduce the accuracy of lung tumor segmentation,
the adversarial method can minimize an approximate modality
discrepancy through an adversarial objective with respect to a
modality discriminator and reserve modality-common represen-
tation. After the modality discriminator DM is added to M5,
MoSNet largely improve the lung tumor segmentation both in
PET images and CT images, compared to M4. Precision. This
adversarial method improves the representation power of the
network for modality-specific lung tumor segmentation in PET
images and CT images.

With regard to modality-specific feature alignment, several
adversarial methods have been tested in the ablation experi-
ments. MMD is used to discriminate modality-specific features
and predictions of PET and CT images. MMD leads to neg-
ative modality-specific features and prediction alignment. In
addition, the complexity of MMD in the reproducing kernel
Hilbert space is large to compute for both modality-specific
features and prediction alignment. GRL can also be used to
minimize an approximate modality discrepancy; however, the
fully connected layers in GRL need to consume huge memory for
modality-specific features. Therefore, the two modality-specific
features are down-sampled and flattened, which reduces the
performance of the discriminator. On contrary, the modality
discriminatorDM consists of convolutional layers and is flexible
to the multiple channel features with the original size.

The other main contributions of this paper are modality-
specific lung tumor segmentation and usage of normal thorax
PET-CT slice pairs. As shown in the ablation experiments and
Fig. 3, the lung tumor contours in the two modality images are
different from each other due to the modality discrepancy and pa-
tient movement, which leads to different ground truth of the two
modality images. Therefore, it is necessary to accomplish the
modality-specific lung tumor segmentation of PET-CT images.
In addition, many previous researches only trained and tested
their models with the 2D thorax slices containing tumors [6],
[9], [34]. In contrast, our models are trained with normal thorax
PET-CT slice pairs. The experiments show that the normal tho-
rax PET-CT slice pairs can largely improve the segmentation of
the lung tumors since there are several neighboring organs, e.g.
liver, heart, and muscles, and they share the similar intensities
both in CT images and PET images between the tumor and its
neighboring organs.

V. CONCLUSION AND FUTURE WORK

In this paper, a modality-specific segmentation network is
proposed for lung tumor segmentation in PET-CT images. Due
to respiration and movment, the lung tumor vary largely in
PET images and CT images. Considering the complementarity
and inconsistency between PET images and CT images, our

method can simultaneously obtain the corresponding lung tumor
segmentations of PET images and CT images. MoSNet can
learn a modality-fused representation to encode the common
feature of lung tumor in PET images and CT images, and
meanwhile, an adversarial method is also proposed to minimize
an approximate modality discrepancy through an adversarial
objective with respect to a modality discriminator and preserve
modality-common representation. Therefore, MoSNet improves
the performance of the network for modality-specific lung tumor
segmentation in PET images and CT images.

One limitation is that our model is designed for 2D thorax
PET-CT slices. As shown in the comparison experiments, the
2.5D and 3D UNets outperform the 2D UNet. Future work will
aim to utilize the neighboring relationships between connected
2D thorax slices.
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